Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Life (Basel) ; 14(2)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398767

RESUMO

This paper describes dispersed cryptospores and trilete spores from tropical, temperate and cool climate belts within Prídolí and compares them with the land plant megafossil record. The palynology of earlier intervals in the Silurian are also reviewed. A common feature of the cryptospore and trilete spore records is that their number is surprisingly lowest in the tropical climatic belt and much higher in the temperate and especially in the cool latitude, and the highest number of cryptospore taxa occurring only in one belt is found in the cool belt while the highest number of trilete spore taxa that occurred only in one belt is recorded in the temperate belt. In general, based on the dispersed spore record, we can estimate that the plant assemblages of the tropical belt were dominated by rhyniophytes; trimerophytes probably prevailed over rhyniophytes in the temperate belt, and rhyniophytes again dominated within the cool belt.

2.
Heliyon ; 10(4): e26360, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420470

RESUMO

The Silurian barrier reef zone in Lithuania extends for hundreds of kilometres in the narrow zone in Middle Lithuania continuing from the Saukenai reef in the north to the Vilkupiai reef in the south. After prolific Cambrian sandstone reservoirs, they are considered a secondary oil target in Lithuania. However, drilling data showed that the detected reefogenic bodies are either "dry" or saturated with water and/or viscous oil thus practically no valuable oil supply has been obtained. This study illustrates a review of the existing geological and geophysical data, acquired during oil and gas explorations since the 1960s, specifically re-analysed for geothermal purposes. The heat production rates of well doublets within the Silurian reefs range from 0.000044 to 0.24 MWh. Within the area of the Kudirka structure, 6 well doublets could be arranged from the existing 16 exploration wells, at the average distance between the producing-injecting wells of around 700 m. Kudirka has the largest reservoir volume and hence the largest reservoir heat potential (250 GWh). At the smallest distance between the doublet wells of 486 m, the thermal breakthrough would be reached after around 30 years of production-injection. Pavasaris reef shows the best geothermal capacity of a well doublet (0.241 MWh). Reservoir properties are especially good in the partially open fracture zone interval. Pavasaris reef has got 2 wells penetrating the reef, thus one doublet could be arranged within the structure. However, the available thermal energy is limited due to hydrogeological closure and small reservoir size (11.2 × 103 MWh). Other reefs (Saukenai, Vilkupiai, North Bliudziai and a reef in the north of the Vadzgirys reef belt) are small isolated structures, thus their heat potential is low. Moreover, they show low flow rates and hence thermal energy that can be extracted at their wellheads in 30 years is well below 1 × 103 MWh. The study indicates that even though the thickness of the reefal build-ups may reach up to c.90 m, the effective thickness of the reservoirs rarely reaches 20 m. Analysis of the well logs and the core sections show a high heterogeneity of the structures, and hence low recovery factors of the doublets. The distribution of effective layers is usually associated with processes such as stylolitisation and secondary fracturing with enhanced dissolution. For measured low flow rates (<9 m3/h), reusing the existing wells shows low economic viability due to the narrow diameters of the boreholes. Therefore, Silurian reefs show low potential for the application of geothermal energy in Middle Lithuania, although small geothermal projects could be achieved in the Kudirka and Pavasaris sites.

3.
Curr Biol ; 33(23): 5225-5232.e3, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37935193

RESUMO

Pterobranchs, a major group of the phylum Hemichordata, first appear in the fossil record during the Cambrian,1 and there are more than 600 fossil genera dominated by the mainly planktic graptolites of the Paleozoic, which are widely used as zone fossils for correlating sedimentary rock sequences.2 Pterobranchs are rare today; they are sessile marine forms represented by Rhabdopleura, which is considered the only living graptolite, and Cephalodiscus. Unlike their sister taxon, the colonial graptolites, cephalodiscids are pseudocolonial.3,4 Here, we describe a problematic fossil from the Silurian (Pridoli) Bertie Group of Ontario (420 mya), a sequence of near-shore sediments well known for its remarkably preserved diversity of eurypterids (sea scorpions).5 The fossil, Rotaciurca superbus, a new genus and species, was familiarly known as Ezekiel's Wheel,5 with reference to the unusual circular arrangement of the tubes that compose it. The structure and arrangement of the tubes identify Rotaciurca as a pterobranch, and phylogenetic analysis groups it with the cephalodiscids. We place it in a new family Rotaciurcidae to distinguish it from Cephalodiscidae. A large structure associated with the tubes is interpreted as a float, which would distinguish Rotaciurca as the only known planktic cephalodiscid-thus cephalodiscids, like the graptolites, invaded the water column. This mode of life reflects the rarity of pseudocolonial macroinvertebrates in planktic ocean communities, a role occupied by the tunicates (Chordata) known as salps today. Our estimates of divergence times, the first using relaxed total-evidence clocks, date the origins of both hemichordates and pterobranchs to the earliest Cambrian (Fortunian).


Assuntos
Cordados não Vertebrados , Cordados , Urocordados , Animais , Filogenia , Fósseis
4.
Swiss J Palaeontol ; 142(1): 20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719137

RESUMO

Concretions are an interesting mode of preservation that can occasionally yield fossils with soft tissues. To properly interpret these fossils, an understanding of their fossilization is required. Probabilistic models are useful tools to identify variations between different Konservat-Lagerstätten that are separated spatially and temporally. However, the application of probabilistic modeling has been limited to Early Paleozoic Konservat-Lagerstätten preserved in shales. In this paper, the patterns of preservation of three concretionary Konservat-Lagerstätten-the Carboniferous Mazon Creek (USA) and Montceau-les-Mines (France), and the Silurian Herefordshire Lagerstätte (UK)-are analyzed using a statistical approach. It is demonstrated that the degree of biotic involvement, i.e., the degree to which a carcass dictates its own preservation, is connected to internal organ conditional probabilities-the probabilities of finding an internal organ associated with another structure such as biomineralized, sclerotized, cuticularized, or cellular body walls. In concretions that are externally forced with little biological mediation (e.g., Herefordshire), all internal organ conditional probabilities are uniform. As biological mediation in concretion formation becomes more pronounced, heterogeneities in conditional probabilities are introduced (e.g., Montceau-les-Mines and Mazon Creek). The three concretionary sites were also compared with previously investigated Konservat-Lagerstätten preserving fossils in shales to demonstrate how the developed probability framework aids in understanding the broad-scale functioning of preservation in Konservat-Lagerstätten. Supplementary Information: The online version contains supplementary material available at 10.1186/s13358-023-00284-4.

5.
R Soc Open Sci ; 10(8): 230661, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37538743

RESUMO

A new arthropod, Carimersa neptuni gen. et sp. nov., is described from the Silurian (Wenlock Series) Herefordshire Konservat-Lagerstätte, UK. The head bears pedunculate eyes and five pairs of appendages. Triflagellate antennae are followed by two pairs of uniramous limbs each with an endopod bearing a pronounced gnathobasic basipod. The posterior two pairs of head limbs and all trunk limbs bear an endopod, exopod and filamentous exite. The trunk consists of 10 appendage-bearing segments followed by an apodous abdomen of four segments. The arthropod resolves as sister taxon to Kodymirus and Eozetetes + Aglaspidida. It is the first representative of Vicissicaudata reported from the Herefordshire Lagerstätte and the first Silurian example with well-preserved appendages. The preservation of a cluster of radiolarians apparently captured by the trunk appendages is the first direct association of predator and prey discovered in the Herefordshire fauna, and suggests that Carimersa was a nektobenthic form that used its gnathobasic basipods in microdurophagy.

6.
Proc Biol Sci ; 290(2000): 20230871, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37312547

RESUMO

Three-dimensional models reveal how the mechanics of exoskeletal enrolment changed during the development of a model organism for insights into ancient arthropod development, the 429-million-year-old trilobite Aulacopleura koninckii. Changes in the number, size and allocation of segments within the trunk, coupled with the need to maintain effective exoskeletal shielding of soft tissue during enrolment, necessitated a transition in enrolment style about the onset of mature growth. During an earlier growth phase, enrolment was sphaeroidal, with the venter of the trunk fitting exactly against that of the head. In later growth, if lateral exoskeletal encapsulation was to be maintained trunk length proportions did not permit such exact fitting, requiring an alternative, non-sphaeoridal enrolment style. Our study favours the adoption of a posture in later growth in which the posterior trunk extended beyond the front of the head. This change in enrolment accommodated a pattern of notable variation in the number of mature trunk segments, well known to characterize the development of this species. It suggests how an animal whose early segmental development was remarkably precisely controlled was able to realize the marked variation in mature segment number that was related, apparently, to life in a physically challenging, reduced oxygen setting.


Assuntos
Artrópodes , Animais , Postura
7.
PeerJ ; 10: e14308, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353603

RESUMO

Abnormal trilobites present insight into how arthropods with fully biomineralised exoskeletons recovered from injuries, genetic malfunctions, and pathologies. Records of abnormal Silurian trilobites in particular show an abundance of specimens with teratologies and a limited record of injuries. Here we expand the record of abnormal Silurian trilobites by presenting seven new abnormal specimens of Odontopleura (Sinespinaspis) markhami from the early Silurian (Llandovery, Telychian) Cotton Formation, New South Wales. We use these specimens to illustrate novel evidence for asymmetric distribution of pleural thoracic spine bases. These abnormal bases likely reflect genetic complications, resulting in morphologies that would unlikely have aided the fitness of abnormal individuals. In considering records of malformed Silurian trilobites more broadly, we propose that the largest trilobites may have been prey at this time. This indicates a possible change in the trophic position of trilobites when compared to Cambrian and Ordovician palaeoecosystems.


Assuntos
Artrópodes , Evolução Biológica , Animais , Humanos , Fósseis , Austrália , New South Wales
8.
Biol Lett ; 17(12): 20210403, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34847752

RESUMO

The fossil record of terrestrialization documents notable shifts in the environmental and physiological tolerances of many animal and plant groups. However, for certain significant components of modern freshwater and terrestrial environments, the transition out of marine settings remains largely unconstrained. Ostracod crustaceans occupy an exceptional range of modern aquatic environments and are invaluable palaeoenvironmental indicators in the fossil record. However, pre-Carboniferous records of supposed non-marine and marginal marine ostracods are sparse, and the timing of their marine to non-marine transition has proven elusive. Here, we reassess the early environmental history of ostracods in light of new assemblages from the late Silurian of Vietnam. Two, low diversity but distinct ostracod assemblages are associated with estuarine deposits. This occurrence is consistent with previous incidental reports of ostracods occupying marginal and brackish settings through the late Silurian and Devonian. Therefore, ostracods were pioneering the occupation of marginal marine and estuarine settings 60 Myr before the Carboniferous and they were a component of the early phase of transition from marine to non-marine environments.


Assuntos
Crustáceos , Estuários , Animais , Fósseis , Água Doce , Plantas
9.
Naturwissenschaften ; 108(6): 58, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34668077

RESUMO

Documentation of malformed trilobites has presented invaluable insight into the palaeobiology of a wholly extinct euarthropod group. Although the northern hemisphere record is relatively well documented, examples of abnormal trilobites from Australia are limited. Furthermore, most recorded specimens are from Cambrian-aged rocks. To extend this limited record, we document five new examples of malformed Australian trilobites from the Middle and Late Silurian (Wenlock and Ludlow) deposits of the Yarralumla Formation of the Australian Capital Territory and Yarwood Siltstone Member, Black Bog Shale in New South Wales. We record the first examples of abnormal pygidial and thoracic nodes and present new evidence for bifurcating pygidial ribs. These abnormal features are considered teratological morphologies. The aberrant nodes likely arose through developmental malfunctions, while the bifurcating ribs represent either similar defects, or an injury that developed into a teratological feature. Explanations for the limited record of malformed Australian trilobites and for the decrease in injured trilobites after the end-Ordovician are presented. Further documentation of malformed Australian trilobites from the middle-to-late Paleozoic will undoubtedly paint a more complete picture of how Gondwanan taxa recovered from injuries or unfortunate developmental complications.


Assuntos
Fósseis , Austrália
10.
Life (Basel) ; 11(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34575055

RESUMO

The most ancient macroscopic plants fossils are Early Silurian cooksonioid sporophytes from the volcanic islands of the peri-Gondwanan palaeoregion (the Barrandian area, Prague Basin, Czech Republic). However, available palynological, phylogenetic and geological evidence indicates that the history of plant terrestrialization is much longer and it is recently accepted that land floras, producing different types of spores, already were established in the Ordovician Period. Here we attempt to correlate Silurian floral development with environmental dynamics based on our data from the Prague Basin, but also to compile known data on a global scale. Spore-assemblage analysis clearly indicates a significant and almost exponential expansion of trilete-spore producing plants starting during the Wenlock Epoch, while cryptospore-producers, which dominated until the Telychian Age, were evolutionarily stagnate. Interestingly cryptospore vs. trilete-spore producers seem to react differentially to Silurian glaciations-trilete-spore producing plants react more sensitively to glacial cooling, showing a reduction in species numbers. Both our own and compiled data indicate highly terrestrialized, advanced Silurian land-plant assemblage/flora types with obviously great ability to resist different dry-land stress conditions. As previously suggested some authors, they seem to evolve on different palaeo continents into quite disjunct specific plant assemblages, certainly reflecting the different geological, geographical and climatic conditions to which they were subject.

11.
Curr Biol ; 31(16): 3613-3620.e2, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34146483

RESUMO

The Silurian Period occupies a pivotal stage in the unfolding of key evolutionary events, including the rise of jawed vertebrates.1-4 However, the understanding of this early diversification is often hampered by the patchy nature of the Silurian fossil record,5 with the articulated specimens of jawed vertebrates only known in isolated localities, most notably Qujing, Yunnan, China.6-9 Here, we report a new Silurian maxillate placoderm, Bianchengichthys micros, from the Ludlow of Chongqing, with a near-complete dermatoskeleton preserved in articulation. Although geographically separated, the new taxon resembles the previously reported Qilinyu in possessing a unique combination of dermatoskeletal characters. However, the dermal bone of the mandible in Bianchengichthys unexpectedly differs from those in both Qilinyu and Entelognathus and displays a broad oral lamina carrying a line of tooth-like denticles, in addition to the marginal toothless flange. The external morphology of the pectoral fin is preserved and reveals an extensively scale-covered lobate part, flanked by a fringe of lepidotrichia-like aligned scales. The phylogenetic analysis reveals that Bianchengichthys is positioned immediately below Entelognathus plus modern gnathostomes. The discovery significantly widens the distribution of Silurian placoderm-grade gnathostomes in South China and provides a range of morphological disparity for the outgroup comparison to the earliest evolution of jaws, dentitions, and pectoral fins in modern gnathostomes. We also demonstrate that the previously reported Silurian placoderms from central Vietnam10 are maxillate placoderms close to Qilinyu, Silurolepis, and Bianchengichthys, corroborating the paleogeographic proximity between the Indochina and South China blocks during the Middle Paleozoic.11.


Assuntos
Peixes , Fósseis , Filogenia , Animais , Evolução Biológica , China , Peixes/classificação
12.
Elife ; 92020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33317696

RESUMO

The ontogenetic trajectory of a marginal jawbone of Lophosteus superbus (Late Silurian, 422 Million years old), the phylogenetically most basal stem osteichthyan, visualized by synchrotron microtomography, reveals a developmental relationship between teeth and dermal odontodes that is not evident from the adult morphology. The earliest odontodes are two longitudinal founder ridges formed at the ossification center. Subsequent odontodes that are added lingually to the ridges turn into conical teeth and undergo cyclic replacement, while those added labially achieve a stellate appearance. Stellate odontodes deposited directly on the bony plate are aligned with the alternate files of teeth, whereas new tooth positions are inserted into the files of sequential addition when a gap appears. Successive teeth and overgrowing odontodes show hybrid morphologies around the oral-dermal boundary, suggesting signal cross-communication. We propose that teeth and dermal odontodes are modifications of a single system, regulated and differentiated by the oral and dermal epithelia.


Human teeth are an example of odontodes: hard structures made of a material called dentine that are sometimes coated in enamel. Teeth are the only odontodes humans have, but other vertebrates (animals with backbones) have tooth-like scales on their skin. These structures are called dermal odontodes, and sharks and rays, for example, are covered with them. How these structures evolved, and whether teeth or dermal odontodes developed first, continues to spark great discussion among palaeontologists. Some researchers think that teeth evolved from dermal odontodes, a theory known as the 'scales-to-teeth' hypothesis. Others think dermal odontodes are distinct from teeth because they lack the same spatial organization. To investigate this further, palaeontologists are looking at the earliest examples of odontodes they can find: fossils of early vertebrates that carry both teeth and dermal odontodes. Here, Chen et al. have studied Lophosteus, one of the earliest bony fishes that lived more than 400 million years ago, to explore early tooth evolution and growth patterns. Chen et al. digitally dissected a fossilized Lophosteus jawbone using submicron X-ray imaging, a technique with resolution to less than one millionth of a metre. Imaging thin sections of the specimen, found in Estonia, Chen et al. reconstructed the entire sequence of odontode development in the bony fish in 3D. The analysis showed that teeth and dermal odontodes initially take shape together but differentiate as they grow, presumably instructed to do so by various developmental signals. However, at a later stage, the two types of odontodes become similar in appearance again, suggesting that they respond to each other's signals. For example, as the jawbone grows, dermal odontodes overgrow the earliest formed teeth. These younger odontodes resemble teeth, while the new teeth developing near the dermal odontodes take after dermal odontodes. These findings suggest that teeth and dermal odontodes are not wholly separate systems but, instead, are closely related on a molecular level. The results also show that contrary to the 'scale-to-teeth' hypothesis, teeth do not evolve from fully formed dermal odontodes, rather the two types of odontodes form out of one founder. This research builds on our knowledge from modern sharks and points to a previously unrecognised evolutionary relationship between teeth and dermal odontodes. It also furthers our understanding of how molecular regulation controls development.


Assuntos
Evolução Biológica , Dentição , Peixes/anatomia & histologia , Fósseis , Odontogênese , Pele/anatomia & histologia , Dente/anatomia & histologia , Animais , Filogenia , Pele/diagnóstico por imagem , Síncrotrons , Dente/diagnóstico por imagem , Microtomografia por Raio-X
13.
Proc Math Phys Eng Sci ; 476(2242): 20200355, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33223936

RESUMO

Tides are a major component of the interaction between the marine and terrestrial environments, and thus play an important part in shaping the environmental context for the evolution of shallow marine and coastal organisms. Here, we use a dedicated tidal model and palaeogeographic reconstructions from the Late Silurian to early Late Devonian (420 Ma, 400 Ma and 380 Ma, Ma = millions of years ago) to explore the potential significance of tides for the evolution of osteichthyans (bony fish) and tetrapods (land vertebrates). The earliest members of the osteichthyan crown-group date to the Late Silurian, approximately 425 Ma, while the earliest evidence for tetrapods is provided by trackways from the Middle Devonian, dated to approximately 393 Ma, and the oldest tetrapod body fossils are Late Devonian, approximately 373 Ma. Large tidal ranges could have fostered both the evolution of air-breathing organs in osteichthyans to facilitate breathing in oxygen-depleted tidal pools, and the development of weight-bearing tetrapod limbs to aid navigation within the intertidal zones. We find that tidal ranges over 4 m were present around areas of evolutionary significance for the origin of osteichthyans and the fish-tetrapod transition, highlighting the possible importance of tidal dynamics as a driver for these evolutionary processes.

14.
PeerJ ; 8: e9008, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32461826

RESUMO

Galeaspids are an endemic clade of jawless stem-gnathostomes known as ostracoderms. Their existence illuminates how specific characteristics developed in jawed vertebrates. Sinogaleaspids are of particular interest among the galeaspids but their monophyly is controversial because little is known about Sinogaleaspis xikengensis. Newly discovered sinogaleaspids from the Lower Silurian of Jiangxi, China provide a wealth of data and diagnostic features used to establish the new genus, Rumporostralis gen. nov., for Sinogaleaspis xikengensis. A morphological study showed that the sensory canal system of sinogaleaspids had mosaic features similar to those of three known galeaspids. There are 3-8 pairs of transverse canals in the Sinogaleaspidae, which suggests that the sensory canal system of galeaspid probably had a grid distribution with transverse canals arranged throughout the cephalic division. Phylogenetic analysis of Galeaspida supports the monophyly of the Sinogaleaspidae, consisting of Sinogaleaspis, Rumporostralis, and Anjiaspis. However, Shuyu and Meishanaspis form another monophyletic group, Shuyuidae fam. nov., which is outside all other eugaleaspidiforms. We propose a cladistically-based classification of Galeaspida based on our analysis.

15.
Proc Biol Sci ; 286(1917): 20191596, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31847724

RESUMO

Although modern vertebrate diversity is dominated by jawed vertebrates, early vertebrate assemblages were predominantly composed of jawless fishes. Hypotheses for this faunal shift and the Devonian decline of jawless vertebrates include predation and competitive replacement. The nature and prevalence of ecological interactions between jawed and jawless vertebrates are highly relevant to both hypotheses, but direct evidence is limited. Here, we use the occurrence and distribution of bite mark type traces in fossil jawless armoured heterostracans to infer predation interactions. A total of 41 predated specimens are recorded; their prevalence increases through time, reaching a maximum towards the end of the Devonian. The bite mark type traces significantly co-occur with jawed vertebrates, and their distribution through time is correlated with jawed vertebrate diversity patterns, particularly placoderms and sarcopterygians. Environmental and ecological turnover in the Devonian, especially relating to the nekton revolution, have been inferred as causes of the faunal shift from jawless to jawed vertebrates. Here, we provide direct evidence of escalating predation from jawed vertebrates as a potential contributing factor to the demise and extinction of ostracoderms.


Assuntos
Evolução Biológica , Peixes , Arcada Osseodentária , Vertebrados , Animais , Fósseis , Filogenia , Comportamento Predatório
16.
Zootaxa ; 4568(3): zootaxa.4568.3.2, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-31715843

RESUMO

Gothograptid retiolitines were distinctive in being one of the very few graptolite groups to thrive through the late Wenlock extinction event that killed off most graptoloid species, and their distinctive construction may have been a factor in this success amid environmental adversity. New and rich material from two localities in Poland and five localities in Lithuania contains Gothograptus nassa, Gothograptus obtectus and four new species. The detailed morphology and reconstruction of the tubarium shows its specific features, different from other lundgreni Biozone retiolitines. The tubarium is narrow, elongated, finite, massive and compact. The thecal orifices are hidden by simple hoods or by extraordinary reticulated veils, which may cover the ventral walls. The colonies of Gothograptus species from the lundgreni Biozone are short, usually having eight pairs of thecae, whereas species from the post-lundgreni interval may reach more than 20 pairs of thecae. A common feature of Gothograptus species is the presence of singular genicular structures tightly covering thecal orifices. Reticulated hoods and veils are characteristic of species from the lundgreni Biozone. The most common such structures are nassa hoods, located on the proximal thecae in some species from the lundgreni Biozone, and on every theca of post-lundgreni species. Only Gothograptus domeyki n. sp. has no genicular processes on most thecae. Within a total of four species from the lundgreni Biozone and three species from the nassa and praedeubeli Biozones, we describe here the new species Gothograptus domeyki and Gothograptus velo from the lundgreni Biozone, Gothograptus diminutus from the parvus/nassa Biozone, and Gothograptus auriculatus from the dubius/nassa and praedeubeli biozones; G. auriculatus n. sp. is the youngest form of the genus Gothograptus. Variation within the genus Gothograptus during the post-lundgreni interval period is shown for the first time.


Assuntos
Evolução Biológica , Gastrópodes , Animais , Lituânia , Polônia
17.
R Soc Open Sci ; 6(9): 191181, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31598327

RESUMO

Silurolepis platydorsalis, a Silurian jawed vertebrate originally identified as an antiarch, is here redescribed as a maxillate placoderm close to Qilinyu and is anteroposteriorly reversed as opposed to the original description. The cuboid trunk shield possesses three longitudinal cristae, obstanic grooves on the trunk shield and three median dorsal plates, all uniquely shared with Qilinyu. Further preparation reveals the morphology of the dermal neck joint, with slot-shaped articular fossae on the trunk shield similar to Qilinyu and antiarchs. However, new tomographic data reveal that Qilinyu uniquely bears a dual articulation between the skull roof and trunk shield, which does not fit into the traditional 'ginglymoid' and 'reverse ginglymoid' categories. An extended comparison in early jawed vertebrates confirms that a sliding-type dermal neck joint is widely distributed and other types are elaborated in different lineages by developing various laminae. Nine new characters related to the dermal neck joint are proposed for a new phylogenetic analysis, in which Silurolepis forms a clade with Qilinyu. The current phylogenetic framework conflicts with the parsimonious evolution of dermal neck joints in suggesting that the shared trunk shield characters between antiarchs and Qilinyu are independently acquired, and the sliding-type joint in Entelognathus is reversely evolved from the dual articulation in Qilinyu.

18.
R Soc Open Sci ; 6(7): 190911, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31417767

RESUMO

Sponges (Porifera), as one of the earliest-branching animal phyla, are crucial for understanding early metazoan phylogeny. Recent studies of Lower Palaeozoic sponges have revealed a variety of character states and combinations unknown in extant taxa, challenging our views of early sponge morphology. The Herefordshire Konservat-Lagerstätte yields an abundant, diverse sponge fauna with three-dimensional preservation of spicules and soft tissue. Carduispongia pedicula gen. et sp. nov. possesses a single layer of hexactine spicules arranged in a regular orthogonal network. This spicule type and arrangement is characteristic of the reticulosans, which have traditionally been interpreted as early members of the extant siliceous Class Hexactinellida. However, the unusual preservation of the spicules of C. pedicula reveals an originally calcareous composition, which would be diagnostic of the living Class Calcarea. The soft tissue architecture closely resembles the complex sylleibid or leuconid structure seen in some modern calcareans and homoscleromorphs. This combination of features strongly supports a skeletal continuum between primitive calcareans and hexactinellid siliceans, indicating that the last common ancestor of Porifera was a spiculate, solitary, vasiform animal with a thin skeletal wall.

19.
Proc Biol Sci ; 286(1900): 20182792, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30966985

RESUMO

Reconstructing the evolutionary assembly of animal body plans is challenging when there are large morphological gaps between extant sister taxa, as in the case of echinozoans (echinoids and holothurians). However, the inclusion of extinct taxa can help bridge these gaps. Here we describe a new species of echinozoan, Sollasina cthulhu, from the Silurian Herefordshire Lagerstätte, UK. Sollasina cthulhu belongs to the ophiocistioids, an extinct group that shares characters with both echinoids and holothurians. Using physical-optical tomography and computer reconstruction, we visualize the internal anatomy of S. cthulhu in three dimensions, revealing inner soft tissues that we interpret as the ring canal, a key part of the water vascular system that was previously unknown in fossil echinozoans. Phylogenetic analyses strongly suggest that Sollasina and other ophiocistioids represent a paraphyletic group of stem holothurians, as previously hypothesized. This allows us to reconstruct the stepwise reduction of the skeleton during the assembly of the holothurian body plan, which may have been controlled by changes in the expression of biomineralization genes.


Assuntos
Fósseis/anatomia & histologia , Pepinos-do-Mar/classificação , Ouriços-do-Mar/classificação , Animais , Biomineralização , Inglaterra , Pepinos-do-Mar/anatomia & histologia , Ouriços-do-Mar/anatomia & histologia
20.
Biol Lett ; 14(11)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404865

RESUMO

Ostracod crustaceans are diverse and ubiquitous in aqueous environments today but relatively few known species have gills. Ostracods are the most abundant fossil arthropods but examples of soft-part preservation, especially of gills, are exceptionally rare. A new ostracod, Spiricopia aurita (Myodocopa), from the marine Silurian Herefordshire Lagerstätte (430 Mya), UK, preserves appendages, lateral eyes and gills. The respiratory system includes five pairs of gill lamellae with hypobranchial and epibranchial canals that conveyed haemolymph. A heart and associated vessels had likely evolved in ostracods by the Mid-Silurian.


Assuntos
Crustáceos/anatomia & histologia , Fósseis/anatomia & histologia , Animais , Crustáceos/classificação , Inglaterra , Sistema Respiratório/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...